Formosan Subterranean Termite Resistance Study of Qora Cladding Panel, Untreated Southern Pine Control, and Treated Reference Control



Report #: WDL-2020-08a ICC NTA Project No. AL060920-39

> Arcitell, LLC 750 Edelweiss Dr NE Sugarcreek, OH 44681

> > Submitted By:

Wood Durability Lab Louisiana Forest Products Development Center School of Renewable Natural Resources LSU Agricultural Center Baton Rouge, LA 70803 Tel. (225) 578-4131 Fax (225) 578-4251

1/12/20

This report shall not be reproduced except in full without approval of the laboratory.

We kindly request that all public references to the contest of this report be attributed to "LSU AgCenter's Wood Durability Laboratory"

## TABLE OF CONTENTS

| IGNATORIES                                    | 3  |
|-----------------------------------------------|----|
| BACKGROUND                                    | 4  |
| DBJECTIVES                                    | .5 |
| IATERIALS AND METHODS                         | .5 |
| ESULTS                                        | 6  |
| CONCLUSIONS                                   | 6  |
| EFERENCES CITED                               | 7  |
| RESULT TABLES                                 | 8  |
| APPENDIX A: IAS CERTIFICATE OF ACCREDITATION1 | 0  |
| ND OF REPORT1                                 | 3  |

Report approved by:

)u Qinfrance

Q.Wu, Ph.D. Professor, Wood Science Wood Durability Laboratory Director Phone: (225) 578-8369 Fax: (225) 578-4251 E-mail: qwu@agcenter.lsu.edu

Report prepared by:

0

J.P. Curole Research Associate Wood Durability Technical Manager Phone: (225) 578-4157 Fax: (225) 578-4251 E-mail: jcurole@agcenter.lsu.edu Date: <u>1/12/20</u>

Date: <u>1/8/20</u>

### Background

The Wood Durability Laboratory (WDL) at the LSU AgCenter became an ISO 17025 accredited laboratory through the International Accreditation Services (IAS) accreditation system on March 1, 2008. Additional test standards were added by IAS to the WDL approved scope of services on July 24, 2008, November 20, 2009, May 31, 2012, January 24, 2014, March 31, 2016, July 26<sup>th</sup>, 2016, and June 6<sup>th</sup>, 2018 (Table 1). The lab has been operating under ISO 17025 Guidelines for over ten years. This report is compliant with ICC-ES AC85. This report has not been reviewed by a licensed professional engineer nor a third party skilled in the art. Samples and information sheets on traceability of samples were provided by the sponsor and verified at the time of sample creation. The results from this test only relate to the items tested.

| IAS Accreditation Number:                 | TL-350                          |
|-------------------------------------------|---------------------------------|
| Accredited Entity:                        | Wood Durability Laboratory      |
| Address:                                  | 227 Renewable Natural Resources |
|                                           | Louisiana State University      |
|                                           | Baton Rouge, Louisiana 70803    |
| Contact Name:                             | Dr. Qinglin Wu, Director        |
| Telephone:                                | (225) 578-8369                  |
| Effective Date of Scope of Accreditation: | April 28 <sup>th</sup> , 2020   |
| Accreditation Standard:                   | ISO/IEC Standard 17025:2017     |

**Table 1**. Current scope and WDL test methods accredited by IAS.

| Fields of Testing     | Accredited Test Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wood testing          | ASTM Standards D143 <sup>2</sup> , D1037 <sup>2</sup> (Compression Parallel to<br>surface, section 12 excluded), D2395 <sup>8</sup> , D3043 <sup>5</sup> (Methods A &<br>D only), D4442 <sup>8</sup> , and D5456 <sup>5</sup> (Test methods referenced in<br>Annex A3 & A4); AC257 <sup>3</sup> test methods referenced in Section<br>4.0, excluding 4.3.1.1, 4.3.1.2, 4.3.1.4, & 4.3.2.2)                                                                                                                                                                                                                                                                                                                                                                |
| Wood<br>preservatives | ASTM Standards D2481 <sup>3</sup> , D3273 <sup>5</sup> , D3345 <sup>1</sup> , D4442 <sup>8</sup> , D4445 <sup>3</sup> ,<br>& D5516 <sup>4</sup><br>AWPA Standards E1 <sup>1</sup> , E5 <sup>3</sup> , E7 <sup>1</sup> , E9 <sup>3</sup> , E10 <sup>1</sup> , E11 <sup>1</sup> , E12 <sup>1</sup> , E16 <sup>3</sup> ,<br>E18 <sup>3</sup> , E20 <sup>6</sup> , E21 <sup>4</sup> , E22 <sup>2</sup> , E23 <sup>2</sup> , E24 <sup>1</sup> , E26 <sup>4</sup> and E29 <sup>5</sup><br>WDMA Standards TM-1 <sup>1</sup> and TM-2 <sup>1</sup><br>WDL-SOP-25 <sup>6</sup> – Field Evaluation of Termiticide against<br>Subterranean Termites<br>AC380 <sup>7</sup> test methods referenced in Sections 3, 4.1, 4.2 and 4.3,<br>excluding 4.4.1 through 4.4.9) |

Approved: <sup>1</sup>March 1, 2008, <sup>2</sup>July 24, 2008, <sup>3</sup>November 20, 2009, <sup>4</sup>May 31, 2012, <sup>5</sup>January 24, 2014, <sup>6</sup>March 31, 2016, <sup>7</sup>July 26, 2016, <sup>8</sup>June 6, 2018, & <sup>9</sup>April 28, 2020

## **OBJECTIVES**

The objective of this study was to evaluate one Qora Cladding Panel, untreated southern pine control, and treated reference control for prevention of Formosan subterranean termite (*Coptotermes formosanus*) feeding in an AWPA E1-17 no-choice test. Representative material was sampled by ICC NTA personnel on September 17, 2020 at the client's manufacturing facility located in Sugarcreek, Ohio. This report describes testing conducted for ICC NTA, LLC on behalf of Arcitell, LLC.

| Intertek WDL-2020-13 15 Jar Test |       |         |  |  |
|----------------------------------|-------|---------|--|--|
| Treatment Sample ID MC Sample ID |       |         |  |  |
| Qora cladding panel              | 1-5   | 1-5mc   |  |  |
| Untreated pine control           | 6-10  | 6-10mc  |  |  |
| Treated reference control        | 16-20 | 16-20mc |  |  |

**Table 2.** Summary data of Qora Cladding Panel plus control samples.

#### MATERIALS AND METHODS

#### Procedure

The test was performed in accordance with American Wood Protection Association (AWPA) E1-17 Standard Method for Laboratory Evaluation to Determine Resistance to Subterranean Termites (AWPA 2020). The no-choice method was used. The test was started on 11/20/20 and was completed on 12/18/20. The experiment consisted of 5 Qora Cladding Panel samples, 5 southern pine sapwood untreated controls, and 5 treated reference controls. All samples were precisely machined into 1 x 1 x <sup>1</sup>/<sub>4</sub> in. test specimens in the correct grain orientation containing 4-6 rings per inch.

Each test jar contained 150 grams of autoclaved sand and 30 milliliters of distilled water. A sample was placed in each jar on top of the sand with an aluminum barrier to prevent chemical leaching into the sand. Four hundred termites were introduced to each jar on the side opposite to the sample. Termites were obtained from Brechtel State Park (Algiers, LA) on 11/10/20 and added to the E1-17 test on 11/20/20. Samples of termites were taken, weighed and the average weight per termite was determined to be 0.00465 grams per termite. Therefore, each jar contained 1.86 grams of termites determined by weight.

After 28 days of exposure, the samples were removed and cleaned with distilled water. The following AWPA E-1 Rating Scale was used to visually rate each sample.

- 10 Sound
- 9.5 Trace, surface nibbles permitted
- 9 Slight attack, up to 3% of cross sectional area affected
- 8 Moderate attack, 3-10% of cross sectional area affected
- 7 Moderate/severe attack, penetration, 10-30% of cross sectional area affected
- 6 Severe attack, 30-50% of cross sectional area affected
- 4 Very severe attack, 50-75% of cross sectional area affected
- 0 Failure

### Results

The data obtained were analyzed for termite resistance with means and standard deviations (SPSS 2020). The Least Significant Difference (LSD) mean separation test procedure was used (Steel and Torrie 1980). Different capital letters following each data value within columns indicate that significant differences were found at the significance level  $\alpha$ = 0.05. Significant differences were not found among treatments when means shared the same letters within columns. All data and records collected during the tests are maintained and are available upon request per ISO 17025 Lab Guidelines.

Table 3 provides a summary of the means (Avg.) for the primary data of interest (i.e., percent mortality, percent weight loss, and treatment ratings). Table 4 provides the statistical data for termite mortality, sample weight loss, and sample rating in a descending order using the Least Significant Difference (LSD) mean separation test procedure.

<u>Percent Termite Mortality</u>. All live termites were counted after the 28 day exposure period. Percent mortality was obtained with this calculation: ((initial termites – live termites) / initial termites)\*100. As shown in Table 4, mean percent termite mortality for the pine controls resulted in the lowest mortality at 6.75%. The treated reference control had 16.90% termite mortality, while the Qora Cladding Panel group had 15.95% termite mortality. The untreated pine controls were significantly different from the groups at  $\alpha$ =0.05 significance level.

<u>Percent Sample Weight Loss.</u> Percent weight loss was based on the original oven dry weight using this formula: ((calculated ODWt – final ODWt)/calculated ODWt)\*100. The test sample oven dry weight is determined by measuring the moisture content of the matched sample and using it to calculate the sample oven dry weight. The final oven dry weight was determined by oven drying the sample after the test. As shown in Table 4, weight loss for the untreated controls was highest at 33.33%. The treated reference control had 3.94% sample weight loss, while the Qora Cladding Panel group had 0.06% sample weight loss. All groups were significantly different from one another at  $\alpha$ =0.05 significance level.

<u>Sample Rating.</u> Trained and experienced scientists estimated the extent of damage by visually sample rating each sample. The rating scale used was 0 to 10. The mean rating value of the untreated pine controls were 0, indicating failures. The treated reference control had 9.3 average ratings, while the Qora Cladding Panel had 10 ratings. All groups were significantly different from one another at  $\alpha$ =0.05 significance level.

## CONCLUSIONS

The Qora Cladding Panel had complete resistance to the termite attack. The treated reference control had slight termite attack. The untreated control mortality, sample weight loss, and sample ratings were consistent with previous test results. The results from the untreated control samples indicate strong termite vigor and performance, and hence the test data are valid.

#### **REFERENCES CITED**

American Wood Protection Association (AWPA). 2020. Standard method for laboratory evaluation to determine resistance to subterranean termites (E1-17). 2020 book of standards. Birmingham, AL.

American Society for Testing and Materials (ASTM). 2020. Standard test method for laboratory evaluation of solid wood for resistance to termites (D3345-17).

SPSS 25 for Windows. 2020. Chicago, IL.

Steel, R.G.D. and J.H. Torrie. 1980. Principle and procedures of statistics – A biometrical approach. 2<sup>nd</sup> edition. McGraw Hill. New York. 633 p.

|    | WDL-2020-08 Qora Cladding Panel 15 Jar Test |           |        |       |       |        |       |         |      |       |
|----|---------------------------------------------|-----------|--------|-------|-------|--------|-------|---------|------|-------|
|    |                                             |           |        |       | Wt.   |        |       |         |      |       |
|    |                                             | Mortality |        | Std.  | Loss  |        | Std.  | Ratings |      | Std.  |
| ID | Treatment                                   | (%)       | mean   | Error | (%)   | mean   | Error | (0-10)  | mean | Error |
| 1  |                                             | 7.50      |        |       | 31.47 |        |       | 0       |      |       |
| 2  | Untreated                                   | 7.25      |        |       | 36.18 |        |       | 0       |      |       |
| 3  | pine                                        | 5.25      | 6.75%  | 1     | 32.87 | 33.26% | 2     | 0       | 0    | 0     |
| 4  | control                                     | 6.50      |        |       | 32.17 |        |       | 0       |      |       |
| 5  |                                             | 7.25      |        |       | 33.63 |        |       | 0       |      |       |
| 6  |                                             | 18.25     |        |       | 0.11  |        |       | 10      |      |       |
| 7  | Qora                                        | 16.00     |        |       | 0.05  |        |       | 10      |      |       |
| 8  | cladding                                    | 13.25     | 15.95% | 2     | 0.11  | 0.06%  | 0     | 10      | 10   | 0     |
| 9  | panel                                       | 17.50     |        |       | 0.02  |        |       | 10      |      |       |
| 10 |                                             | 14.75     |        |       | 0.03  |        |       | 10      |      |       |
| 16 |                                             | 18.25     |        |       | 4.59  |        |       | 9       |      |       |
| 17 | Treated                                     | 15.25     |        |       | 3.58  |        |       | 10      |      |       |
| 18 | reference                                   | 17.50     | 16.90% | 1     | 3.56  | 3.94%  | 0     | 10      | 9.3  | 0     |
| 19 | control                                     | 17.50     |        |       | 4.02  |        |       | 9       |      |       |
| 20 |                                             | 16.00     |        |       | 3.97  |        |       | 9       |      |       |

 Table 3. Summary data for termite mortality, sample weight loss, and sample rating.

| WDL-2020-08 Qora Cl       | adding Panel 15 | Jar Test  |
|---------------------------|-----------------|-----------|
| Summa                     | ary Table       |           |
| Treatment                 | Mortality       | LSD Group |
| Untreated pine control    | 6.75%           | Α         |
| Qora cladding panel       | 15.95%          | B         |
| Treated reference control | 16.90%          | B         |
|                           |                 |           |
| Treatment                 | Weight Loss     | LSD Group |
| Untrasted pine control    | 22 260/         | ٨         |

| Table 4. | Termite mortality, | weight loss, | and sample ra | ting and statistics*. |
|----------|--------------------|--------------|---------------|-----------------------|
|----------|--------------------|--------------|---------------|-----------------------|

| Treatment                 | Weight Loss | LSD Group |
|---------------------------|-------------|-----------|
| Untreated pine control    | 33.26%      | Α         |
| Qora cladding panel       | 0.06%       | В         |
| Treated reference control | 3.94%       | В         |

| Treatment                 | Ratings | LSD Group |
|---------------------------|---------|-----------|
| Untreated pine control    | 0       | Α         |
| Treated reference control | 9.3     | В         |
| Qora cladding panel       | 10      | В         |

\*Groups containing the same capital letter are not significantly different at  $\alpha$ =0.05.



# SCOPE OF ACCREDITATION

International Accreditation Service, Inc. 3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. 1 www.iasonline.org

## WOOD DURABILITY LABORATORY

Contact Name Dr. Qinglin Wu Accredited to ISO/IEC 17025:2017 Contact Phone +225 578-8369 Effective Date July 9, 2020

| Physical                              |                                                                                                                                                            |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ASTM D143                             | Standard test methods for small clear specimens of timber                                                                                                  |  |  |
| ASTM D1037                            | Standard test methods for evaluating properties of wood-base fiber and particle<br>panel materials (compression parallel to surface, section 12, excluded) |  |  |
| ASTM D2395                            | Standard Test Methods for Density and Specific Gravity (Relative Density) of<br>Wood and Wood-Based Materials                                              |  |  |
| ASTM D2481                            | Standard test method for accelerated evaluation of wood preservatives for<br>marine services by means of small size specimens                              |  |  |
| ASTM D3043                            | Standard test methods for structural panels in flexure (methods A and D only)                                                                              |  |  |
| ASTM D3273                            | Standard test method for resistance to growth of mold on the surface of interior<br>coatings in an environmental chamber                                   |  |  |
| ASTM D3345                            | Standard test method for laboratory evaluation of wood and other cellulosic<br>materials for resistance to termites                                        |  |  |
| ASTM D4442                            | Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials                                                             |  |  |
| ASTM D4445                            | Standard test method for fungicides for controlling sapstain and mold on<br>unseasoned lumber (laboratory method)                                          |  |  |
| ASTM D5456                            | Standard specification for evaluation of structural composite lumber products<br>(test methods referenced in annex A3 and A4 only)                         |  |  |
| ASTM D5516                            | Standard test method for evaluating the flexural properties of fire-retardant<br>treated softwood plywood exposed to elevated temperatures                 |  |  |
| AWPA E1                               | Laboratory methods for evaluating the termite resistance of wood-based<br>materials: choice and no-choice tests                                            |  |  |
| AWPA E5                               | Standard test method for evaluation of wood preservatives to be used in marine<br>applications (UC5A, UC5B, UC5C); panel and block tests                   |  |  |
| AWPA E7                               | Standard field test for evaluation of wood preservatives to be used in ground<br>contact (UC4A, UC4B, UC4C); stake test                                    |  |  |
| AWPA E9                               | Standard field test for the evaluation of wood preservatives to be used above<br>ground (UC3A and UC3B); L-joint test                                      |  |  |
| TL-350<br>WOOD DURABILI<br>LABORATORY | TY IAS INTERNATIONAL<br>ACCREDITATION<br>SERVICE" Page 2 of                                                                                                |  |  |

# SCOPE OF ACCREDITATION

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. 1 www.iasonline.org

| AWPA E10     | Laboratory method for evaluating the decay resistance of wood-based materials<br>against pure basidiomycete cultures: soil/block test                                                                  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AWPA E11     | Standard method for accelerated evaluation of preservative leaching                                                                                                                                    |
| AWPA E12     | Standard method of determining corrosion of metal in contact with treated wood                                                                                                                         |
| AWPA E16     | Standard field test for evaluation of wood preservatives to be used above<br>ground (UC3B); horizontal lap-joint test                                                                                  |
| AWPA E18     | Standard field test for evaluation of wood preservatives to be used above<br>ground (UC3B); ground proximity decay test                                                                                |
| AWPA E20     | Standard method of determining the depletion of wood preservatives in soil<br>contact                                                                                                                  |
| AWPA E21     | Standard field test method for the evaluation of wood preservatives to be used<br>for interior applications (UC1 and UC2); full-size commodity termite test                                            |
| AWPA E22     | Laboratory method for rapidly evaluating the decay resistance of wood-based<br>materials against pure basidiomycete cultures using compression strength:<br>soil/water test                            |
| AWPA E23     | Laboratory method for rapidly evaluating the decay resistance of wood-based<br>materials in ground contact using static bending: soil jar test                                                         |
| AWPA E24     | Laboratory method for evaluating the mold resistance of wood-based materials:<br>mold chamber test                                                                                                     |
| AWPA E26     | Standard field test for evaluation of wood preservatives intended for interior<br>applications (UC1 and UC2): ground proximity termite test                                                            |
| AWPA E29     | Antisapstain field test method for green lumber                                                                                                                                                        |
| ICC ES AC257 | Corrosion-resistant fasteners and evaluation of corrosion effects of wood<br>treatment chemicals (test methods referenced in section 4.0, excluding sections<br>4.3.1.1, 4.3.1.2, 4.3.1.4 and 4.3.2.2) |
| ICC ES AC380 | Termite physical barrier systems (test methods referenced in sections 3, 4, 1, 4,2 and 4,3, excluding 4,4,1 through 4,4,9)                                                                             |
| WDL-SOP-25   | Field evaluation of termiticide against subterranean termites                                                                                                                                          |
| WDMA T.M. 1  | Soil block test method                                                                                                                                                                                 |
| WDMA T.M. 2  | Swellometer test method                                                                                                                                                                                |

AWPA: American Wood Preservers' Association

WDMA: Window and Door Manufacturer Association

TL-350 WOOD DURABILITY LABORATORY



Page 3 of 3

End of report